MathDB
K 23

Source:

May 25, 2007
functionFunctional Equations

Problem Statement

Let Q+{\mathbb Q}^{+} be the set of positive rational numbers. Construct a function f:Q+Q+f:{\mathbb Q}^{+}\rightarrow{\mathbb Q}^{+} such that f(xf(y))=f(x)yf(xf(y)) = \frac{f(x)}{y} for all x,yQ+x, y \in{\mathbb Q}^{+}.