MathDB
Miklos Schweitzer 1969_3

Source:

October 15, 2008
functionabstract algebragroup theoryreal analysisreal analysis unsolved

Problem Statement

Let f(x) f(x) be a nonzero, bounded, real function on an Abelian group G G, g1,...,gk g_1,...,g_k are given elements of G G and λ1,...,λk \lambda_1,...,\lambda_k are real numbers. Prove that if i=1kλif(gix)0 \sum_{i=1}^k \lambda_i f(g_ix) \geq 0 holds for all xG x \in G, then i=1kλi0. \sum_{i=1}^k \lambda_i \geq 0. A. Mate