MathDB
Divergent improper integral

Source: VJIMC 2017, Category I, Problem 4

April 2, 2017
calculusintegrationreal analysiscollege contests

Problem Statement

Let f:(1,)Rf:(1,\infty) \to \mathbb{R} be a continuously differentiable function satisfying f(x)x2log(x)f(x) \le x^2 \log(x) and f(x)>0f'(x)>0 for every x(1,)x \in (1,\infty). Prove that 11f(x)dx=.\int_1^{\infty} \frac{1}{f'(x)} dx=\infty.