MathDB
$\frac{a_1 + a_2}{2}$ $\frac{a_1+ a_2 +a_3}{2 \sqrt{2}}$

Source: 239 2000 S3

May 18, 2020
Inequalityalgebra

Problem Statement

For all positive real numbers a1,a2,,ana_1, a_2, \dots, a_n, prove that a1 ⁣+ ⁣a22a2 ⁣+ ⁣a32an ⁣+ ⁣a12a1 ⁣+ ⁣a2 ⁣+ ⁣a322a2 ⁣+ ⁣a3 ⁣+ ⁣a422an ⁣+ ⁣a1 ⁣+ ⁣a222. \frac{a_1\! +\! a_2}{2} \cdot \frac{a_2\! +\! a_3}{2} \cdot \dots \cdot \frac{a_n\! +\! a_1}{2} \leq \frac{a_1\!+\!a_2\!+\!a_3}{2 \sqrt{2}} \cdot \frac{a_2\!+\!a_3\!+\!a_4}{2 \sqrt{2}} \cdot \dots \cdot \frac{a_n\!+\!a_1\!+\!a_2}{2 \sqrt{2}}.