MathDB
polynomial

Source: miklos schweitzer 1997 q3

September 23, 2021
polynomialalgebraMiklos Schweitzer

Problem Statement

Denote fn(X)Z[X]f_n(X) \in \Bbb Z [X] the polynomial Πj=1n(X+j1)\Pi_{j=1}^n ( X + j -1). Show that if the numbers α\alpha and β\beta satisfy f1997(α)=f1999(β)=0f'_{1997} (\alpha) = f'_{1999} (\beta) = 0 , then f1997(α)f1999(β)f_{1997} (\alpha ) \neq f_{1999} (\beta) .