MathDB
Prove the value of the limit is 0

Source: 2019 Jozsef Wildt International Math Competition-W. 18

May 18, 2020
limitSequences

Problem Statement

Let {ck}k1\{c_k\}_{k\geq1} be a sequence with 0ck10 \leq c_k \leq 1, c10c_1 \neq 0, α>1\alpha > 1. Let Cn=c1++cnC_n = c_1 + \cdots + c_n. Prove limnC1α++Cnα(C1++Cn)α=0\lim \limits_{n \to \infty}\frac{C_1^{\alpha}+\cdots+C_n^{\alpha}}{\left(C_1+\cdots +C_n\right)^{\alpha}}=0