MathDB
Miklos Schweitzer 1970_1

Source:

October 22, 2008
superior algebrasuperior algebra unsolved

Problem Statement

We have 2n\plus{}1 elements in the commutative ring R R: α,α1,...,αn,ϱ1,...,ϱn. \alpha,\alpha_1,...,\alpha_n,\varrho_1,...,\varrho_n . Let us define the elements \sigma_k\equal{}k\alpha \plus{} \sum_{i\equal{}1}^n \alpha_i\varrho_i^k . Prove that the ideal (σ0,σ1,...,σk,...) (\sigma_0,\sigma_1,...,\sigma_k,...) can be finitely generated. L. Redei