MathDB
sum ...+1/(\sqrt{2015}+\sqrt{2016}) OLCOMA Costa Rica Final 2016 Shortlist A1 D1

Source:

September 23, 2021
algebra

Problem Statement

Prove that (11+2+12+3+13+4+...+12015+2016)2(2017+2414)=20152\left( \frac{1}{\sqrt1+\sqrt2}+\frac{1}{\sqrt2+\sqrt3}+\frac{1}{\sqrt3+\sqrt4}+...+\frac{1}{\sqrt{2015}+\sqrt{2016}}\right)^2(2017+24\sqrt{14})=2015^2