MathDB
eigenvalues of sum of hermitian matrices (2x2)

Source: VJIMC 2003 1.4

July 12, 2021
matrixlinear algebra

Problem Statement

Let AA and BB be complex Hermitian 2×22\times2 matrices having the pairs of eigenvalues (α1,α2)(\alpha_1,\alpha_2) and (β1,β2)(\beta_1,\beta_2), respectively. Determine all possible pairs of eigenvalues (γ1,γ2)(\gamma_1,\gamma_2) of the matrix C=A+BC=A+B. (We recall that a matrix A=(aij)A=(a_{ij}) is Hermitian if and only if aij=ajia_{ij}=\overline{a_{ji}} for all ii and jj.)