MathDB
Problems
Contests
International Contests
IMO Longlists
1971 IMO Longlists
12
Product of x_k is equal to 1 - [IMO LongList 1971]
Product of x_k is equal to 1 - [IMO LongList 1971]
Source:
January 1, 2011
logarithms
algebra proposed
algebra
Problem Statement
A system of n numbers
x
1
,
x
2
,
…
,
x
n
x_1, x_2, \ldots, x_n
x
1
,
x
2
,
…
,
x
n
is given such that
x
1
=
log
x
n
−
1
x
n
,
x
2
=
log
x
n
x
1
,
…
,
x
n
=
log
x
n
−
2
x
n
−
1
.
x_1 = \log_{x_{n-1}} x_n, x_2 = \log_{x_{n}} x_1, \ldots, x_n = \log_{x_{n-2}} x_{n-1}.
x
1
=
lo
g
x
n
−
1
x
n
,
x
2
=
lo
g
x
n
x
1
,
…
,
x
n
=
lo
g
x
n
−
2
x
n
−
1
.
Prove that
∏
k
=
1
n
x
k
=
1.
\prod_{k=1}^n x_k =1.
∏
k
=
1
n
x
k
=
1.
Back to Problems
View on AoPS