MathDB
vector and lengths (in)equality

Source: 2022 Viet Nam math olympiad for high school students D1 P4

March 20, 2023
geometryvector

Problem Statement

Assume that ABC\triangle ABC is acute. Let a=BC,b=CA,c=ABa=BC, b=CA, c=AB. a) Denote HH by the orthocenter of ABC\triangle ABC. Prove that:a.HAHA+b.HBHB+c.HCHC=0.a.\frac{{\overrightarrow {HA} }}{{HA}} + b.\frac{{\overrightarrow {HB} }}{{HB}} + c.\frac{{\overrightarrow {HC} }}{{HC}} = \overrightarrow 0 . b) Consider a point PP lying on the plane. Prove that the sum:aPa+bPB+cPCaPa+bPB+cPC get its minimum value iff PHP\equiv H.