MathDB
Sequence becomes positive halfway through

Source: India TST 2018, D4 P2

July 18, 2018
algebraSequences

Problem Statement

Let n2n\ge 2 be a natural number. Let a1a2a3ana_1\le a_2\le a_3\le \cdots \le a_n be real numbers such that a1+a2++an>0a_1+a_2+\cdots +a_n>0 and n(a12+a22++an2)=2(a1+a2++an)2.n(a_1^2+a_2^2+\cdots +a_n^2)=2(a_1+a_2+\cdots +a_n)^2. If m=n/2+1m=\lfloor n/2\rfloor+1, the smallest integer larger than n/2n/2, then show that am>0.a_m>0.