MathDB
IMC problem 5

Source: IMC 1994

September 24, 2014
vectorinductionIMCcollege contests

Problem Statement

problem 5. Let x1,x2,,xkx_1, x_2,\ldots, x_k be vectors of mm-dimensional Euclidean space, such that x1+x2++xk=0x_1+x_2+\ldots + x_k=0. Show that there exists a permutation π\pi of the integers {1,2,,k}\{ 1, 2, \ldots, k \} such that: i=1nxπ(i)(i=1kxi2)1/2\left\lVert \sum_{i=1}^n x_{\pi (i)}\right\rVert \leq \left( \sum_{i=1}^k \lVert x_i \rVert ^2\right)^{1/2}for each n=1,2,,kn=1, 2, \ldots, k. Note that \lVert \cdot \rVert denotes the Euclidean norm. (18 points).