problem 5.
Let x1,x2,…,xk be vectors of m-dimensional Euclidean space, such that x1+x2+…+xk=0. Show that there exists a permutation π of the integers {1,2,…,k} such that:
i=1∑nxπ(i)≤(i=1∑k∥xi∥2)1/2for each n=1,2,…,k. Note that ∥⋅∥ denotes the Euclidean norm.
(18 points).