MathDB
China Mathematical Olympiad 1993 problem6

Source: China Mathematical Olympiad 1993 problem6

September 23, 2013
functioninequalitiesinduction

Problem Statement

Let f:(0,+)(0,+)f: (0,+\infty)\rightarrow (0,+\infty) be a function satisfying the following condition: for arbitrary positive real numbers xx and yy, we have f(xy)f(x)f(y)f(xy)\le f(x)f(y). Show that for arbitrary positive real number xx and natural number nn, inequality f(xn)f(x)f(x2)12f(xn)1nf(x^n)\le f(x)f(x^2)^{\dfrac{1}{2}}\dots f(x^n)^{\dfrac{1}{n}} holds.