MathDB
Number of functions

Source: Junior Olympiad of Malaysia Shortlist 2015 N8

July 17, 2015
functionnumber theory

Problem Statement

Set p5p\ge 5 be a prime number and nn be a natural number. Let ff be a function f:Z0N0 f: \mathbb{Z_{ \neq }}_0 \rightarrow \mathbb{ N }_0 satisfy the following conditions:
i) For all sequences of integers satisfy ai∉{0,1} a_i \not\in \{0, 1\} , and p p ∤\not | ai1 a_i-1 , \forall 1ip2 1 \le i \le p-2 ,\\ i=1p2f(ai)=f(a1a2ap2) \displaystyle \sum^{p-2}_{i=1}f(a_i)=f(a_1a_2 \cdots a_{p-2})
ii) For all coprime integers a a and b b , ab(modp)f(a)=f(b) a \equiv b \pmod p \Rightarrow f(a)=f(b)
iii) There exist kZ0k \in \mathbb{Z}_{\neq 0} that satisfy f(k)=n f(k)=n
Prove that the number of such functions is d(n) d(n) , where d(n) d(n) denotes the number of divisors of n n .