MathDB
Kvant M2797 inequality

Source: Kvant Magazine No. 5-6 2024 M2797

August 25, 2024
Inequalityalgebrainequalities

Problem Statement

For real numbers 0a1a2...an0 \leq a_1 \leq a_2 \leq ... \leq a_n and 0b1b2...bn0 \leq b_1 \leq b_2 \leq ... \leq b_n prove that (a112+a223+...+ann(n+1))×(b112+b223+...+bnn(n+1))a1b112+a2b223+...+anbnn(n+1). \left( \frac{a_1}{1 \cdot 2}+\frac{a_2}{2 \cdot 3}+...+\frac{a_n}{n(n+1)} \right) \times \left( \frac{b_1}{1 \cdot 2}+\frac{b_2}{2 \cdot 3}+...+\frac{b_n}{n(n+1)} \right) \leq \frac{a_1b_1}{1 \cdot 2}+\frac{a_2b_2}{2 \cdot 3}+...+\frac{a_nb_n}{n(n+1)}. Proposed by A. Antropov