Let D be the midpoint of [AC] of △ABC with m(ABC)=90∘ and ∣AC∣=10. Let E be the point of intersections of bisectors of [AD] and [BD]. Let F be the point of intersections of bisectors of [BD] and [CD]. If ∣EF∣=13, then ∣AB∣ can be<spanclass=′latex−bold′>(A)</span>20132<spanclass=′latex−bold′>(B)</span>15132<spanclass=′latex−bold′>(C)</span>10132<spanclass=′latex−bold′>(D)</span>5132<spanclass=′latex−bold′>(E)</span>None