MathDB
Co-ordinate bash? Maybe not..

Source: ISI Entrance 2014, P2

May 11, 2014
functiongeometrygeometric inequality

Problem Statement

Let us consider a triangle ΔPQR\Delta{PQR} in the co-ordinate plane. Show for every function f:R2R  ,f(X)=ax+by+cf: \mathbb{R}^2\to \mathbb{R}\;,f(X)=ax+by+c where X(x,y) and a,b,cRX\equiv (x,y) \text{ and } a,b,c\in\mathbb{R} and every point AA on ΔPQR\Delta PQR or inside the triangle we have the inequality: \begin{align*} & f(A)\le \text{max}\{f(P),f(Q),f(R)\} \end{align*}