MathDB
Sets of values.

Source: St Petersburg Olympiad 2009, Grade 11, P1

August 30, 2017
algebra

Problem Statement

f(x)=ax2+bx+c;a,b,cf(x)=ax^2+bx+c;a,b,c are reals. M={f(2n)n is integer},N={f(2n+1)n is integer}M=\{f(2n)|n \text{ is integer}\},N=\{f(2n+1)|n \text{ is integer}\} Prove that M=NM=N or M \cap N = \O