MathDB
Putnam 1940 B6

Source: Putnam 1940

February 22, 2022
Putnamlinear algebramatrixMatrix determinant

Problem Statement

Prove that the determinant of the matrix (a12+ka1a2a1a3a1ana2a1a22+ka2a3a2anana1ana2ana3an2+k)\begin{pmatrix} a_{1}^{2}+k & a_1 a_2 & a_1 a_3 &\ldots & a_1 a_n\\ a_2 a_1 & a_{2}^{2}+k & a_2 a_3 &\ldots & a_2 a_n\\ \ldots & \ldots & \ldots & \ldots & \ldots \\ a_n a_1& a_n a_2 & a_n a_3 & \ldots & a_{n}^{2}+k \end{pmatrix} is divisible by kn1k^{n-1} and find its other factor.