MathDB
Iberoamerican 2017 problem 3

Source: Iberoamerican 2017 p. 3

September 20, 2017
combinatoricsIberoamericaninternational competitions

Problem Statement

Consider the configurations of integers a1,1a_{1,1} a_{2,1}   a_{2,2} a_{3,1}   a_{3,2}   a_{3,3} \dots   \dots   \dots a_{2017,1}   a_{2017,2}   a_{2017,3}   \dots   a_{2017,2017} Where ai,j=ai+1,j+ai+1,j+1a_{i,j} = a_{i+1,j} + a_{i+1,j+1} for all i,ji,j such that 1ji20161 \leq j \leq i \leq 2016. Determine the maximum amount of odd integers that such configuration can contain.