MathDB
0623 bijective mappings 6th edition Round 2 p3

Source:

May 3, 2021
6th editioncombinatorics

Problem Statement

Let σ:{1,2,...,n}{1,2,...,n}\sigma : \{1, 2, . . . , n\} \to \{1, 2, . . . , n\} be a bijective mapping. Let SnS_n be the set of all such mappings and let dk(σ)=σ(k)σ(k+1)d_k(\sigma) = |\sigma(k) - \sigma(k + 1)|, for all k{1,2,...,n}k \in \{1, 2, ..., n\}, where σ(n+1)=σ(1)\sigma (n + 1) = \sigma (1). Also let d(σ)=min{dk(σ)1kn}d(\sigma) = \min \{d_k(\sigma) | 1 \le k \le n\}. Find maxσSnd(σ)\max_{\sigma \in S_n} d(\sigma).