MathDB
analysis

Source: miklos schertzer 1994 q3

October 16, 2021
real analysis

Problem Statement

Let p be an odd prime, A be a non-empty subset of residue classes modulo p, f:ARf:A\to\mathbb R. Suppose that f is not constant and satisfies f(x)f(x+h)+f(xh)2f(x) \leq \frac{f(x + h) + f(x-h)}{2} whenever x,x+h,xhAx,x+h,x-h\in A. Prove that Ap+12|A| \leq \frac{p + 1}{2}.