MathDB
recursion for 1!+2!+...+n!

Source: Putnam 1984 B1

September 2, 2021
number theorySequencesrecurrence relation

Problem Statement

Let nn be a positive integer, and define f(n)=1!+2!++n!f(n)=1!+2!+\ldots+n!. Find polynomials PP and QQ such that f(n+2)=P(n)f(n+1)+Q(n)f(n)f(n+2)=P(n)f(n+1)+Q(n)f(n)for all n1n\ge1.