MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad
2000 All-Russian Olympiad
2
Inequality in 2n variables with 13th powers
Inequality in 2n variables with 13th powers
Source: All-Russian MO 2000
December 30, 2012
inequalities
inequalities unsolved
n-variable inequality
abel formula
Problem Statement
Let
−
1
<
x
1
<
x
2
,
⋯
<
x
n
<
1
-1 < x_1 < x_2 , \cdots < x_n < 1
−
1
<
x
1
<
x
2
,
⋯
<
x
n
<
1
and
x
1
13
+
x
2
13
+
⋯
+
x
n
13
=
x
1
+
x
2
+
⋯
+
x
n
x_1^{13} + x_2^{13} + \cdots + x_n^{13} = x_1 + x_2 + \cdots + x_n
x
1
13
+
x
2
13
+
⋯
+
x
n
13
=
x
1
+
x
2
+
⋯
+
x
n
. Prove that if
y
1
<
y
2
<
⋯
<
y
n
y_1 < y_2 < \cdots < y_n
y
1
<
y
2
<
⋯
<
y
n
, then
x
1
13
y
1
+
⋯
+
x
n
13
y
n
<
x
1
y
1
+
x
2
y
2
+
⋯
+
x
n
y
n
.
x_1^{13}y_1 + \cdots + x_n^{13}y_n < x_1y_1 + x_2y_2 + \cdots + x_ny_n.
x
1
13
y
1
+
⋯
+
x
n
13
y
n
<
x
1
y
1
+
x
2
y
2
+
⋯
+
x
n
y
n
.
Back to Problems
View on AoPS