MathDB
min of S = 2a +3 +32/(a - b) (2b +3)^2, for a>b>0 (HOMC 2019 JI-9)

Source:

November 7, 2020
algebrainequalitiesmin

Problem Statement

Let aa and bb be positive real numbers with a>ba > b. Find the smallest possible values of S=2a+3+32(ab)(2b+3)2S = 2a +3 +\frac{32}{(a - b)(2b +3)^2}