Let xi∈{0,1}(i=1,2,⋯,n). If the function f=f(x1,x2,⋯,xn) only equals 0 or 1, then define f as an "n-variable Boolean function" and denote
Dn(f)={(x1,x2,⋯,xn)∣f(x1,x2,⋯,xn)=0}.
(1) Determine the number of n-variable Boolean functions;
(2) Let g be a 10-variable Boolean function satisfying
g(x1,x2,⋯,x10)≡1+x1+x1x2+x1x2x3+⋯+x1x2⋯x10(mod2)
Evaluate the size of the set D10(g) and (x1,x2,⋯,x10)∈D10(g)∑(x1+x2+x3+⋯+x10).