MathDB
Problems
Contests
Undergraduate contests
Putnam
1988 Putnam
B2
Putnam 1988 B2
Putnam 1988 B2
Source:
August 6, 2019
Putnam
Problem Statement
Prove or disprove: If
x
x
x
and
y
y
y
are real numbers with
y
≥
0
y\geq0
y
≥
0
and
y
(
y
+
1
)
≤
(
x
+
1
)
2
y(y+1) \leq (x+1)^2
y
(
y
+
1
)
≤
(
x
+
1
)
2
, then
y
(
y
−
1
)
≤
x
2
y(y-1)\leq x^2
y
(
y
−
1
)
≤
x
2
.
Back to Problems
View on AoPS