MathDB
Divisibility of Binomial Differences

Source: SAMO 2016 Q6

September 24, 2016
number theory

Problem Statement

Let kk and mm be integers with 1<k<m1 < k < m. For a positive integer ii, let LiL_i be the least common multiple of 1,2,,i1,2,\ldots,i. Prove that kk is a divisor of Li[(mi)(mki)]L_i \cdot [\binom{m}{i} - \binom{m-k}{i}] for all i1i \geq 1. [Here, (ni)=n!i!(ni)!\binom{n}{i} = \frac{n!}{i!(n-i)!} denotes a binomial coefficient. Note that (ni)=0\binom{n}{i} = 0 if n<in < i.]