Let k and m be integers with 1<k<m. For a positive integer i, let Li be the least common multiple of 1,2,…,i.
Prove that k is a divisor of Li⋅[(im)−(im−k)] for all i≥1. [Here, (in)=i!(n−i)!n! denotes a binomial coefficient. Note that (in)=0 if n<i.]