Let n≥2 be a positive integer. Call a sequence a1,a2,⋯,ak of integers an n-chain if 1=a2<a2<⋯<ak=n, ai divides ai+1 for all i, 1≤i≤k−1. Let f(n) be the number of n-chains where n≥2. For example, f(4)=2 corresponds to the 4-chains {1,4} and {1,2,4}. Prove that f(2m⋅3)=2m−1(m+2) for every positive integer m.