MathDB
RMO 2024 Q6

Source: RMO 2024 Q6

November 3, 2024
number theory

Problem Statement

Let n2n \geq 2 be a positive integer. Call a sequence a1,a2,,aka_1, a_2, \cdots , a_k of integers an nn-chain if 1=a2<a2<<ak=n1 = a_2 < a_ 2 < \cdots < a_k =n, aia_i divides ai+1a_{i+1} for all ii, 1ik11 \leq i \leq k-1. Let f(n)f(n) be the number of nn-chains where n2n \geq 2. For example, f(4)=2f(4) = 2 corresponds to the 44-chains {1,4}\{1,4\} and {1,2,4}\{1,2,4\}.
Prove that f(2m3)=2m1(m+2)f(2^m \cdot 3) = 2^{m-1} (m+2) for every positive integer mm.