MathDB
Kosovo Mathematical Olympiad, #3. (Grade 12)

Source:

March 13, 2011
inequalitiesinequalities proposed

Problem Statement

If a,b,ca,b,c are real positive numbers prove that the inequality holds:
a3+b3a2+b2+b3+c3b2+c2+c3+a3c2+a26(ab+bc+ac)(a+b+c)(a+b)(b+c)(c+a) \frac{\sqrt{a^3+b^3}}{a^2+b^2}+\frac{\sqrt{b^3+c^3}}{b^2+c^2}+\frac{\sqrt{c^3+a^3}}{c^2+a^2} \ge \frac{6(ab+bc+ac)}{(a+b+c)\sqrt{(a+b)(b+c)(c+a)}}