MathDB
a^1 + a^2 +...+ a^n = 1 mod 10 (1997 Chile NMO P2)

Source:

November 23, 2021
number theorydivisibledivides

Problem Statement

Given integers a>0a> 0, n>0n> 0, suppose that a1+a2+...+an1mod10a^1 + a^2 +...+ a^n \equiv 1 \mod 10. Prove that an1mod10a \equiv n \equiv 1 \mod 10 .