MathDB
Benelux Mathematical Olympiad 2016, Problem 3

Source:

May 1, 2016
algebrafunctional equation

Problem Statement

Find all functions f:RZf :\Bbb{ R}\to \Bbb{Z} such that (f(f(y)x))2+f(x)2+f(y)2=f(y)(1+2f(f(y))),\left( f(f(y) - x) \right)^2+ f(x)^2 + f(y)^2 = f(y) \cdot \left( 1 + 2f(f(y)) \right), for all x,yR.x, y \in \Bbb{R}.