MathDB
Problems
Contests
National and Regional Contests
India Contests
Regional Mathematical Olympiad
2014 India Regional Mathematical Olympiad
6
Indian RMO 2014 P6
Indian RMO 2014 P6
Source:
December 7, 2014
inequalities
Problem Statement
Let
x
1
,
x
2
,
x
3
…
x
2014
x_1,x_2,x_3 \ldots x_{2014}
x
1
,
x
2
,
x
3
…
x
2014
be positive real numbers such that
∑
j
=
1
2014
x
j
=
1
\sum_{j=1}^{2014} x_j=1
∑
j
=
1
2014
x
j
=
1
. Determine with proof the smallest constant
K
K
K
such that
K
∑
j
=
1
2014
x
j
2
1
−
x
j
≥
1
K\sum_{j=1}^{2014}\frac{x_j^2}{1-x_j} \ge 1
K
j
=
1
∑
2014
1
−
x
j
x
j
2
≥
1
Back to Problems
View on AoPS