MathDB
Turkey NMO 2007 1st Round - P30 (Number Theory)

Source:

October 5, 2012
modular arithmetic

Problem Statement

Let (an)n=1(a_n)_{n=1}^{\infty} be an integer sequence such that an+48an(mod35)a_{n+48} \equiv a_n \pmod {35} for every n1n \geq 1. Let ii and jj be the least numbers satisfying the conditions an+ian(mod5)a_{n+i} \equiv a_n \pmod {5} and an+jan(mod7)a_{n+j} \equiv a_n \pmod {7} for every n1n\geq 1. Which one below cannot be an (i,j)(i,j) pair?
<spanclass=latexbold>(A)</span> (16,4)<spanclass=latexbold>(B)</span> (3,16)<spanclass=latexbold>(C)</span> (8,6)<spanclass=latexbold>(D)</span> (1,48)<spanclass=latexbold>(E)</span> (16,18) <span class='latex-bold'>(A)</span>\ (16,4) \qquad<span class='latex-bold'>(B)</span>\ (3,16) \qquad<span class='latex-bold'>(C)</span>\ (8,6) \qquad<span class='latex-bold'>(D)</span>\ (1,48) \qquad<span class='latex-bold'>(E)</span>\ (16,18)