MathDB
Miklós Schweitzer 2004, Problem 10

Source: Miklós Schweitzer 2004

July 30, 2016
college contestsMiklos Schweitzerprobabilitynormal distribution

Problem Statement

Let Np\mathcal{N}_p stand for a pp dimensional random variable of standard normal distribution. For aRpa\in\mathbb{R}^p, let Hp(a)H_p(a) stand for the expectation ENp+aE|\mathcal{N}_p+a|. For p>1p>1, prove that Hp(a)=(p1)0H1(ar2+1)rp2(r2+1)pdrH_p(a)=(p-1)\int_0^{\infty} H_1\left( \frac{|a|}{\sqrt{r^2+1}}\right) \frac{r^{p-2}}{\sqrt{(r^2+1)^p}} \mathrm{d}r