MathDB
Q(x) = P(x) P(x^3) P(x^9) P(x^{27}) P(x^{81})

Source: Polish MO second round 1970 p5

August 28, 2024
algebrapolynomial

Problem Statement

Given the polynomial P(x)=1213x+16x2 P(x) = \frac{1}{2} - \frac{1}{3}x + \frac{1}{6}x^2 . Let Q(x)=k=0mbkxk Q(x) = \sum_{k=0}^{m} b_k x^k be a polynomial given by Q(x)=P(x)P(x3)P(x9)P(x27)P(x81). Q(x) = P(x) \cdot P(x^3) \cdot P(x^9) \cdot P(x^{27}) \cdot P(x^{81}). Calculate k=0mbk \sum_{k=0}^m |b_k| .