MathDB
Bosnia and Herzegovina JBMO TST 2009 Problem 3

Source: Bosnia and Herzegovina Junior Balkan Mathematical Olympiad TST 2009

September 17, 2018
number theoryprimeDivisionprime numbers

Problem Statement

Let pp be a prime number, p3p\neq 3 and let aa and bb be positive integers such that pa+bp \mid a+b and p2a3+b3p^2\mid a^3+b^3. Show that p2a+bp^2 \mid a+b or p3a3+b3p^3 \mid a^3+b^3