Let n be a positive integer. For all i,j∈{1,2,...,n} define aj,i=1 if j=i and aj,i=0 otherwise. Also, for i=n+1,...,2n and j=1,...,n define aj,i=−n1.
Prove that for any permutation p of the set {1,2,...,2n} the following inequality holds: ∑j=1n∣∑k=1naj,p(k)∣≥2n