MathDB
Inequality with sin θ

Source:

September 6, 2010
inequalitiestrigonometrymodular arithmeticinequalities unsolved

Problem Statement

Let θ1,θ2,,θn\theta_1,\theta_2,\cdots,\theta_n be nn real numbers such that sinθ1+sinθ2++sinθn=0\sin \theta_1+\sin \theta_2+\cdots+\sin \theta_n=0. Prove that sinθ1+2sinθ2++nsinθn[n24]|\sin \theta_1+2 \sin \theta_2+\cdots +n \sin \theta_n| \leq \left[ \frac{n^2}{4} \right]