MathDB
Convex polyhedron with numbers at its vertices

Source: VJIMC 2017, Category I, Problem 3

April 2, 2017
college contestsgeometry

Problem Statement

Let PP be a convex polyhedron. Jaroslav writes a non-negative real number to every vertex of PP in such a way that the sum of these numbers is 11. Afterwards, to every edge he writes the product of the numbers at the two endpoints of that edge. Prove that the sum of the numbers at the edges is at most 38\frac{3}{8}.