MathDB
Indian Team Selection Test 2010 ST1 P3

Source:

May 22, 2010
floor functionmodular arithmeticcombinatorics unsolvedcombinatorics

Problem Statement

For any integer n2n\ge 2, let N(n)N(n) be the maximum number of triples (aj,bj,cj),j=1,2,3,,N(n),(a_j,b_j,c_j),j=1,2,3,\cdots ,N(n), consisting of non-negative integers aj,bj,cja_j,b_j,c_j (not necessarily distinct) such that the following two conditions are satisfied:
(a) aj+bj+cj=n,a_j+b_j+c_j=n, for all j=1,2,3,N(n)j=1,2,3,\cdots N(n); (b) jkj\neq k, then ajaka_j\neq a_k, bjbkb_j\neq b_k and cjckc_j\neq c_k.
Determine N(n)N(n) for all n2n\ge 2.