MathDB
Inequality for the n positive integers a_i

Source: Chinese MO 2004

November 3, 2008
inequalitiesalgebrapolynomialn-variable inequality

Problem Statement

For a given positive integer n2n\ge 2, suppose positive integers aia_i where 1in1\le i\le n satisfy a1<a2<<ana_1<a_2<\ldots <a_n and i=1n1ai1\sum_{i=1}^n \frac{1}{a_i}\le 1. Prove that, for any real number xx, the following inequality holds (i=1n1ai2+x2)2121a1(a11)+x2\left(\sum_{i=1}^n\frac{1}{a_i^2+x^2}\right)^2\le\frac{1}{2}\cdot\frac{1}{a_1(a_1-1)+x^2}
Li Shenghong