MathDB
find k

Source: Ukraine 1997 grade 10

July 21, 2009
functionalgebra unsolvedalgebra

Problem Statement

Let d(n) d(n) denote the largest odd divisor of a positive integer n n. The function f:NN f: \mathbb{N} \rightarrow \mathbb{N} is defined by f(2n\minus{}1)\equal{}2^n and f(2n)\equal{}n\plus{}\frac{2n}{d(n)} for all nN n \in \mathbb{N}. Find all natural numbers k k such that: f(f(...f(1)...))\equal{}1997. (where the paranthesis appear k k times)