MathDB
Faculty fraction sum

Source: China TST 2000, problem 2

May 22, 2005
inductionalgebrapolynomialfactorialcombinatoricsFinite Differences

Problem Statement

Given positive integers k,m,nk, m, n such that 1kmn1 \leq k \leq m \leq n. Evaluate
i=0n(1)in+k+i(m+n+i)!i!(ni)!(m+i)!.\sum^{n}_{i=0} \frac{(-1)^i}{n+k+i} \cdot \frac{(m+n+i)!}{i!(n-i)!(m+i)!}.