MathDB
Fractional Inequality - ILL 1990 VIE2

Source:

September 19, 2010
inequalitiesinequalities proposed

Problem Statement

Let x,y,zx,y,z be positive reals and xyzx \geq y \geq z. Prove that x2yz+y2zx+z2xyx2+y2+z2\frac{x^2y}{z}+\frac{y^2z}{x}+\frac{z^2x}{y} \geq x^2+y^2+z^2