MathDB
Distinct partial sums

Source: 2023 Israel TST Test 7 P2

May 9, 2023
TSTcombinatoricsmodular arithmeticabstract algebra

Problem Statement

Let n>3n>3 be an integer. Integers a1,,ana_1, \dots, a_n are given so that ak{k,k}a_k\in \{k, -k\} for all 1kn1\leq k\leq n. Prove that there is a sequence of indices 1k1,k2,,knn1\leq k_1, k_2, \dots, k_n\leq n, not necessarily distinct, for which the sums ak1a_{k_1} ak1+ak2a_{k_1}+a_{k_2} ak1+ak2+ak3a_{k_1}+a_{k_2}+a_{k_3} \vdots ak1+ak2++akna_{k_1}+a_{k_2}+\cdots+a_{k_n} have distinct residues modulo 2n+12n+1, and so that the last one is divisible by 2n+12n+1.