MathDB
2020 Taiwan APMO Preliminary Problem 6

Source: 2020 Taiwan APMO Preliminary

July 23, 2020
algebrainequalitiesInequality

Problem Statement

Let a,b,ca,b,c be positive reals. Find the minimum value of 13a+13b+2c2a+2b+24ab+13c2b+2c+(a+24b+13c)2c+2a\dfrac{13a+13b+2c}{2a+2b}+\dfrac{24a-b+13c}{2b+2c}+\dfrac{(-a+24b+13c)}{2c+2a}. (1)What is the minimum value? (2)If the minimum value occurs when (a,b,c)=(a0,b0,c0)(a,b,c)=(a_0,b_0,c_0),then find b0a0+c0b0\frac{b_0}{a_0}+\frac{c_0}{b_0}.