MathDB
IMC 2010, Problem 5, Day 2

Source:

July 27, 2010
functionalgebrapolynomialvectoranalytic geometryreal analysisnumber theory

Problem Statement

Suppose that for a function f:RRf: \mathbb{R}\to \mathbb{R} and real numbers a<ba<b one has f(x)=0f(x)=0 for all x(a,b).x\in (a,b). Prove that f(x)=0f(x)=0 for all xRx\in \mathbb{R} if k=0p1f(y+kp)=0\sum^{p-1}_{k=0}f\left(y+\frac{k}{p}\right)=0 for every prime number pp and every real number y.y.