MathDB
ASU 318 All Soviet Union MO 1981 P/2 < p < 3P/4 perimeter inequality

Source:

July 23, 2019
geometryperimeterinequalitiesgeometric inequalityratio

Problem Statement

The points C1,A1,B1C_1, A_1, B_1 belong to [AB],[BC],[CA][AB], [BC], [CA] sides, respectively, of the triangle ABCABC . AC1C1B=BA1A1C=CB1B1A=13\frac{|AC_1|}{|C_1B| }=\frac{ |BA_1|}{|A_1C| }= \frac{|CB_1|}{|B_1A| }= \frac{1}{3} Prove that the perimeter PP of the triangle ABCABC and the perimeter pp of the triangle A1B1C1A_1B_1C_1 , satisfy inequality P2<p<3P4\frac{P}{2} < p < \frac{3P}{4}